
Week 5 - Wednesday



 What did we talk about last time?
 Exam 1!
 And before that?
 Review!

 And before that?
 Scrum









 Software quality is how well the software meets the needs of 
its stakeholders

 That's a pretty frustrating definition, since "stakeholders" can 
mean a lot of people
 Some of whom have conflicting desires

 Also, stakeholder needs and desires change over time
 Especially in a field that changes as quickly as technology

 To be more precise, the International Standards Organization 
(ISO), defined eight dimensions of software quality



 Functional suitability
 How much the product satisfies user 

needs
 Performance efficiency
 Processing time and resources used

 Compatibility
 How well the product can co-exist and 

interoperate with other products
 Usability
 How easy the product is to learn and use

 Reliability
 The extent to which the product does 

certain functions under given conditions 
and recovers from interruptions

 Security
 Confidentiality, integrity, authenticity, 

non-repudiation, and accountability
 Maintainability
 How easy it is to modify, adapt, and reuse 

the product
 Portability
 How easy it is to make the product work in 

a different computing environment



 Quality assurance (QA) is a system for making sure the product 
satisfies stakeholder needs

 QA focuses on two distinct goals:
 Validation
 Testing if the product satisfies stakeholder needs
 "Are we building the right product?"
 Example: Does the customer want steak and fries?

 Verification
 Testing if the product satisfies needs properly
 "Are we building the product right?"
 Example: Are the steak and fries cooked well?



 The distinction is important yet confusing
 Validation is always specific to the product
 The details of whether the product is right depend on what you're making

 Some verification might be specific to the product and some 
might not be
 Using an exponential algorithm or writing confusing comments is always 

bad
 Validation is associated more with customer satisfaction
 Verification is more about meeting specifications
 Both are important
 It's hard to validate things if they can't be verified
 Verification doesn't matter if the product is invalid



 Defects are bad things
 Which QA is trying to get rid of

 Saying "defect" is more general than "bug" because it includes 
mistakes in implementation as well as features might be 
correctly implemented but are not what the customer wanted

 There are two approaches to defect elimination
 Defect prevention: Keep the defect from showing up in the first 

place
 Defect detection and removal: Find the defect and remove it
▪ Example: debugging



 There is no one way to prevent defects
 Instead, preventing defects must be built into the software 

development processes that the entire organization uses
 Process improvement is making a process better
 Training and education are necessary

 Process guides such as documentation standards and style 
guides help

 Using well-studied design methodologies (such as OOP) can 
help



 Reusing design architectures that have been successful in the 
past can prevent defects
 Examples: MVC and pipe-and-filter

 Design patterns are standard patterns for OOP classes
 Examples: decorator and factory

 Using well-studied algorithms and data structures helps a 
great deal

 Reusing code (often from libraries) is smart, especially since 
those libraries have been tested thoroughly



 Formal methods include systems for mathematically 
checking that code does what it's supposed to
 Not all code can be modeled mathematically
 Yet some of these systems have found bugs in real software, such as 

TimSort, the most commonly used sort in Python and Java
 Prototypes let us explore what defects might happen before 

putting them in the final product
 The opposite end of the spectrum from formal methods, since 

prototypes are practical rather than theoretical



 Many tools help reduce defects
 Version control tools help track code over time
 Configuration management tools allow changes in one tool to 

automatically update other tools
 Examples: Puppet and Ansible

 Integrated development environments (IDEs), once called 
computer aided software engineering (CASE) tools, can integrate 
many useful tools for defect prevention
 Syntax highlighting
 Two-way translation between code and UML models
 Style checking



 A good process can't keep out all defects
 Some defects will show up and must be found and removed
 Defect detection and removal techniques fall into two 

categories:
 Review and correct
 Test and debug

 Review and correct methods look at the code while test and 
debug methods look at the product in operation



 There's a formal name for just looking at your code for errors: a 
desk check

 A walkthrough is when you explain your code to someone else
 An inspection is a more formal process with trained inspectors
 Inspection roles:
 Moderator schedules and runs the meeting and distributes the code
 Author of the code
 Reader who guides the meeting
 Recorder who takes notes
 Inspectors who check code before and during the meeting



1. Readiness check
 Moderator checks that the code has no known defects already

2. Overview meeting
 Author distributes the code

3. Preparation
 Each inspector reviews the code individually

4. Team inspection
 The reader guides the inspectors through the code, and they comment on it

5. Corrections
 The moderator gives the feedback to the author, who corrects defects

6. Follow-up
 The moderator makes sure the defects were corrected



 Inspectors should have a good checklist of stuff to look for
 Checklists should be improved over time

 Information given about defects is specific
 Inspectors attend at most one inspection per day
 Inspection meetings last at most two hours
 The moderator is not a manager
 Interactions are not judgmental: defects are the focus, not the 

author
 The report is given to the author within 24 hours

 It can be stressful to have an inspection, but they can really help 
find defects



 Testing software helps find cases that are not obvious from 
looking at the code

 Software testing has some jargon:
 A failure is a deviation between actual behavior and intended 

behavior
 A fault is a defect that can give rise to a failure
 A trigger is a condition that causes a fault to result in a failure
 A test case is a set of inputs and program states
 A collection of test cases is a test suite



 Debugging is using trigger conditions to find and fix faults
 Testing is cheap
 Just running a test can be easily automated

 Debugging is expensive
 Fixing problems by coming up with tests and discovering the source 

of the problems is hard
 Debugging can be made cheaper in two ways
 Debug small components
 Debug as soon as you make a few changes to working code



System Testing

 Unit tests test a small piece of code (method 
or class) in isolation from other code
 Often done by the author

 Integration tests test several small pieces of 
code together
 By the author, a testing team, or both

 Alpha and beta tests test the whole product
 Alpha tests usually have a testing team
 Beta tests include users

Unit 
Testing

Integration 
Testing

Alpha 
Testing

Beta 
Testing



 Since requirements should be testable, each requirement 
should have at least one (and usually many) tests

 Unit testing happens at the implementation phase
 Integration usually happens later
 It is often needed to make stubs, placeholders for code that hasn't 

been written yet
 System testing usually happens at the very end of the process
 Regression testing means rerunning all tests
 This is done when any change is made the product
 Fixing X might have broken Y



 The biggest difference is that unit, integration, and system 
tests happen every sprint

 Unit tests are often done by authors
 However, unit tests can also be acceptance criteria for a user 

story
 The user story is done when all the unit tests pass
 These tests might be selected by people other than the authors

 Agile approaches often use test-driven development (TDD)
 Write the tests before you write the code



 Some techniques for preventing or removing defects are more effective than others
 Inspections are often more effective than testing
 Different techniques find different bugs, so it's valuable to use them all
 The following table shows defect removal efficiencies for different techniques, from a 2013 study

Technique Minimum (%) Median (%) Maximum (%)

Requirements review (informal) 20 30 50

Top-level design review (informal) 30 40 60

Detailed functional design inspection 30 65 80

Detailed logic design inspection 35 65 75

Code inspection or static analysis 35 60 90

Unit tests 10 25 50

Integration tests 25 45 60

System tests 25 50 65

External beta tests 15 40 75



Defect 
Elimination

Defect 
Prevention

Process Guides

Analysis and Design Methods

Reference Architectures

Design Patterns

Data Structures and Algorithms

Software Reuse

Prototyping

Version Control

Configuration Management

IDE Tools

Training and Education

Defect 
Detection 
and Removal

Review and Correct Style and Standards Checkers

Spelling and Grammar Checkers

Reviews
• Desk Checks
• Walkthroughs
• Inspections

Test and Debug Regression Testing

Unit Testing

Integration Testing

System Testing
• Alpha Testing
• Beta Testing





 User interaction design next Monday
 Work day on Friday



 Read Chapter 6: User Interaction Design for Monday
 Work on the draft of Project 2
 Office hours from 4-5 today are cancelled due to a meeting


	COMP 3100
	Last time
	Questions?
	Project 2
	Software Quality Assurance
	Software quality
	Eight dimensions of software quality
	Quality assurance
	Validation vs. verification
	Defect elimination
	Defect prevention
	Reusing ideas
	Formal methods and prototypes
	Tools
	Defect detection and removal
	Review and correct methods
	Inspection process
	Guidelines for inspections
	Test and debug
	Debugging
	Overview of testing
	Test and debug in waterfall
	Test and debug in Scrum
	Efficiency of detect and remove
	Breaking it all down
	Upcoming
	Next time…
	Reminders

