
Week 5 - Wednesday



 What did we talk about last time?
 Exam 1!
 And before that?
 Review!

 And before that?
 Scrum









 Software quality is how well the software meets the needs of 
its stakeholders

 That's a pretty frustrating definition, since "stakeholders" can 
mean a lot of people
 Some of whom have conflicting desires

 Also, stakeholder needs and desires change over time
 Especially in a field that changes as quickly as technology

 To be more precise, the International Standards Organization 
(ISO), defined eight dimensions of software quality



 Functional suitability
 How much the product satisfies user 

needs
 Performance efficiency
 Processing time and resources used

 Compatibility
 How well the product can co-exist and 

interoperate with other products
 Usability
 How easy the product is to learn and use

 Reliability
 The extent to which the product does 

certain functions under given conditions 
and recovers from interruptions

 Security
 Confidentiality, integrity, authenticity, 

non-repudiation, and accountability
 Maintainability
 How easy it is to modify, adapt, and reuse 

the product
 Portability
 How easy it is to make the product work in 

a different computing environment



 Quality assurance (QA) is a system for making sure the product 
satisfies stakeholder needs

 QA focuses on two distinct goals:
 Validation
 Testing if the product satisfies stakeholder needs
 "Are we building the right product?"
 Example: Does the customer want steak and fries?

 Verification
 Testing if the product satisfies needs properly
 "Are we building the product right?"
 Example: Are the steak and fries cooked well?



 The distinction is important yet confusing
 Validation is always specific to the product
 The details of whether the product is right depend on what you're making

 Some verification might be specific to the product and some 
might not be
 Using an exponential algorithm or writing confusing comments is always 

bad
 Validation is associated more with customer satisfaction
 Verification is more about meeting specifications
 Both are important
 It's hard to validate things if they can't be verified
 Verification doesn't matter if the product is invalid



 Defects are bad things
 Which QA is trying to get rid of

 Saying "defect" is more general than "bug" because it includes 
mistakes in implementation as well as features might be 
correctly implemented but are not what the customer wanted

 There are two approaches to defect elimination
 Defect prevention: Keep the defect from showing up in the first 

place
 Defect detection and removal: Find the defect and remove it
▪ Example: debugging



 There is no one way to prevent defects
 Instead, preventing defects must be built into the software 

development processes that the entire organization uses
 Process improvement is making a process better
 Training and education are necessary

 Process guides such as documentation standards and style 
guides help

 Using well-studied design methodologies (such as OOP) can 
help



 Reusing design architectures that have been successful in the 
past can prevent defects
 Examples: MVC and pipe-and-filter

 Design patterns are standard patterns for OOP classes
 Examples: decorator and factory

 Using well-studied algorithms and data structures helps a 
great deal

 Reusing code (often from libraries) is smart, especially since 
those libraries have been tested thoroughly



 Formal methods include systems for mathematically 
checking that code does what it's supposed to
 Not all code can be modeled mathematically
 Yet some of these systems have found bugs in real software, such as 

TimSort, the most commonly used sort in Python and Java
 Prototypes let us explore what defects might happen before 

putting them in the final product
 The opposite end of the spectrum from formal methods, since 

prototypes are practical rather than theoretical



 Many tools help reduce defects
 Version control tools help track code over time
 Configuration management tools allow changes in one tool to 

automatically update other tools
 Examples: Puppet and Ansible

 Integrated development environments (IDEs), once called 
computer aided software engineering (CASE) tools, can integrate 
many useful tools for defect prevention
 Syntax highlighting
 Two-way translation between code and UML models
 Style checking



 A good process can't keep out all defects
 Some defects will show up and must be found and removed
 Defect detection and removal techniques fall into two 

categories:
 Review and correct
 Test and debug

 Review and correct methods look at the code while test and 
debug methods look at the product in operation



 There's a formal name for just looking at your code for errors: a 
desk check

 A walkthrough is when you explain your code to someone else
 An inspection is a more formal process with trained inspectors
 Inspection roles:
 Moderator schedules and runs the meeting and distributes the code
 Author of the code
 Reader who guides the meeting
 Recorder who takes notes
 Inspectors who check code before and during the meeting



1. Readiness check
 Moderator checks that the code has no known defects already

2. Overview meeting
 Author distributes the code

3. Preparation
 Each inspector reviews the code individually

4. Team inspection
 The reader guides the inspectors through the code, and they comment on it

5. Corrections
 The moderator gives the feedback to the author, who corrects defects

6. Follow-up
 The moderator makes sure the defects were corrected



 Inspectors should have a good checklist of stuff to look for
 Checklists should be improved over time

 Information given about defects is specific
 Inspectors attend at most one inspection per day
 Inspection meetings last at most two hours
 The moderator is not a manager
 Interactions are not judgmental: defects are the focus, not the 

author
 The report is given to the author within 24 hours

 It can be stressful to have an inspection, but they can really help 
find defects



 Testing software helps find cases that are not obvious from 
looking at the code

 Software testing has some jargon:
 A failure is a deviation between actual behavior and intended 

behavior
 A fault is a defect that can give rise to a failure
 A trigger is a condition that causes a fault to result in a failure
 A test case is a set of inputs and program states
 A collection of test cases is a test suite



 Debugging is using trigger conditions to find and fix faults
 Testing is cheap
 Just running a test can be easily automated

 Debugging is expensive
 Fixing problems by coming up with tests and discovering the source 

of the problems is hard
 Debugging can be made cheaper in two ways
 Debug small components
 Debug as soon as you make a few changes to working code



System Testing

 Unit tests test a small piece of code (method 
or class) in isolation from other code
 Often done by the author

 Integration tests test several small pieces of 
code together
 By the author, a testing team, or both

 Alpha and beta tests test the whole product
 Alpha tests usually have a testing team
 Beta tests include users

Unit 
Testing

Integration 
Testing

Alpha 
Testing

Beta 
Testing



 Since requirements should be testable, each requirement 
should have at least one (and usually many) tests

 Unit testing happens at the implementation phase
 Integration usually happens later
 It is often needed to make stubs, placeholders for code that hasn't 

been written yet
 System testing usually happens at the very end of the process
 Regression testing means rerunning all tests
 This is done when any change is made the product
 Fixing X might have broken Y



 The biggest difference is that unit, integration, and system 
tests happen every sprint

 Unit tests are often done by authors
 However, unit tests can also be acceptance criteria for a user 

story
 The user story is done when all the unit tests pass
 These tests might be selected by people other than the authors

 Agile approaches often use test-driven development (TDD)
 Write the tests before you write the code



 Some techniques for preventing or removing defects are more effective than others
 Inspections are often more effective than testing
 Different techniques find different bugs, so it's valuable to use them all
 The following table shows defect removal efficiencies for different techniques, from a 2013 study

Technique Minimum (%) Median (%) Maximum (%)

Requirements review (informal) 20 30 50

Top-level design review (informal) 30 40 60

Detailed functional design inspection 30 65 80

Detailed logic design inspection 35 65 75

Code inspection or static analysis 35 60 90

Unit tests 10 25 50

Integration tests 25 45 60

System tests 25 50 65

External beta tests 15 40 75



Defect 
Elimination

Defect 
Prevention

Process Guides

Analysis and Design Methods

Reference Architectures

Design Patterns

Data Structures and Algorithms

Software Reuse

Prototyping

Version Control

Configuration Management

IDE Tools

Training and Education

Defect 
Detection 
and Removal

Review and Correct Style and Standards Checkers

Spelling and Grammar Checkers

Reviews
• Desk Checks
• Walkthroughs
• Inspections

Test and Debug Regression Testing

Unit Testing

Integration Testing

System Testing
• Alpha Testing
• Beta Testing





 User interaction design next Monday
 Work day on Friday



 Read Chapter 6: User Interaction Design for Monday
 Work on the draft of Project 2
 Office hours from 4-5 today are cancelled due to a meeting


	COMP 3100
	Last time
	Questions?
	Project 2
	Software Quality Assurance
	Software quality
	Eight dimensions of software quality
	Quality assurance
	Validation vs. verification
	Defect elimination
	Defect prevention
	Reusing ideas
	Formal methods and prototypes
	Tools
	Defect detection and removal
	Review and correct methods
	Inspection process
	Guidelines for inspections
	Test and debug
	Debugging
	Overview of testing
	Test and debug in waterfall
	Test and debug in Scrum
	Efficiency of detect and remove
	Breaking it all down
	Upcoming
	Next time…
	Reminders

